Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soft robots, constructed from deformable materials, offer significant advantages over rigid robots by mimicking biological tissues and providing enhanced adaptability, safety, and functionality across various applications. Central to these robots are electroactive polymer (EAP) actuators, which allow large deformations in response to external stimuli. This review examines various EAP actuators, including dielectric elastomers, liquid crystal elastomers (LCEs), and ionic polymers, focusing on their potential as artificial muscles. EAPs, particularly ionic and electronic varieties, are noted for their high actuation strain, flexibility, lightweight nature, and energy efficiency, making them ideal for applications in mechatronics, robotics, and biomedical engineering. This review also highlights piezoelectric polymers like polyvinylidene fluoride (PVDF), known for their flexibility, biocompatibility, and ease of fabrication, contributing to tactile and pressure sensing in robotic systems. Additionally, conducting polymers, with their fast actuation speeds and high strain capabilities, are explored, alongside magnetic polymer composites (MPCs) with applications in biomedicine and electronics. The integration of machine learning (ML) and the Internet of Things (IoT) is transforming soft robotics, enhancing actuation, control, and design. Finally, the paper discusses future directions in soft robotics, focusing on self-healing composites, bio-inspired designs, sustainability, and the continued integration of IoT and ML for intelligent, adaptive, and responsive robotic systems.more » « lessFree, publicly-accessible full text available March 1, 2026
-
The ability to repeat research is vital in confirming the validity of scientific discovery and is relevant to ubiquitous sensor research. Investigation of novel sensors and sensing mechanisms intersect several Federal and non-Federal agencies. Despite numerous studies on sensors at different stages of development, the absence of new field-ready or commercial sensors seems limited by reproducibility. Current research practices in sensors needs sustainable transformations. The scientific community seeks ways to incorporate reproducibility and repeatability to validate published results. A case study on the reproducibility of low-cost air quality sensors is presented. In this context, the article discusses (a) open source data management frameworks in alignment with findability, accessibility, interoperability, and reuse (FAIR) principles to facilitate sensor reproducibility; (b) suggestions for journals focused on sensors to incorporate a reproducibility editorial board and incentivization for data sharing; (c) practice of reproducibility by targeted focus issues; and (d) education of current and the next generation of diverse student and faculty community on FAIR principles. The existence of different types of sensors such as physical, chemical, biological, and magnetic (to name a few) and the fact that the sensing field spans multiple disciplines (electrical engineering, mechanical engineering, physics, chemistry, and electrochemistry) call for a generic model for reproducibility. Considering the available metrics, the authors propose eight FAIR metric standards to that transcend disciplines: citation standards, design and analysis transparency, data transparency, analytical methods transparency, research materials transparency, hardware transparency, preregistration of studies, and replication.more » « lessFree, publicly-accessible full text available December 2, 2025
-
Electrochemical sensors have become a pivotal tool in ensuring the safety and security of the global food supply chain, which is crucial for public health, economic stability, and environmental sustainability. Modern food systems, with their complex global distribution and varied processing methods, require advanced solutions for detecting contaminants and maintaining food quality. This review delves into recent advancements in electrochemical food sensor technology, highlighting their operating principles, types, cutting-edge materials, and methods enhancing their effectiveness. These sensors are adept at identifying a broad range of foodborne pathogens, chemical contaminants, and adulterants while monitoring food freshness and quality. Innovations include using nanomaterials and conductive polymers and shifting towards miniaturized, portable devices for on-site and real-time analysis. The review also addresses challenges such as sensitivity, selectivity, and matrix effects, pointing out emerging trends and future research avenues to overcome these hurdles. Regulatory and standardization issues relevant to adopting these technologies in food safety protocols are also considered. Highlighting the last three years, this review emphasizes the indispensable role of electrochemical sensors in boosting food safety and security and the need for ongoing innovation and cross-disciplinary cooperation to advance this area.more » « less
An official website of the United States government
